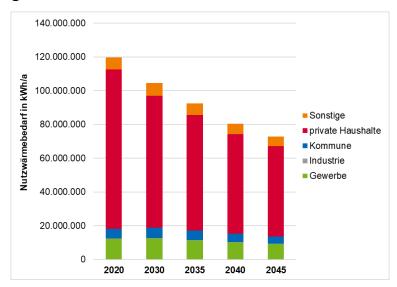


Information zur kommunalen Wärmeplanung für die Verwaltungsgemeinschaft Rochlitz

Thema: Ergebnisse der Potenzialanalyse gemäß §16 WPG

Stand: 14.11.2024

Ziele:


- Ermittlung der Potenziale zur Energieeinsparung infolge Wärmebedarfsreduktion.
- Abschätzung und räumliche Verortung der Potenziale erneuerbarer Energien.
- Differenzierung der Potenziale in:
 - <u>Potenziale erneuerbarer Energien zur Wärmeerzeugung:</u> z.B. Solarthermie (Dachflächen), Geothermie, Umweltwärme, erneuerbare Gase (Biogas/grüner Wasserstoff).
 - o <u>Potenziale erneuerbarer Energien zur Stromerzeugung für Wärmezwecke:</u> z.B. Photovoltaik (Dachflächen), Windkraft.
- Berücksichtigung geltender gesetzlicher Bestimmungen bei der Potenzialermittlung, wie etwa mindestens einzuhaltende Siedlungsabstände bei Windkraftanlagen oder der Ausschluss bestimmter Flächen (Naturschutzgebiete o.Ä.).

Vorgehen

- Analyse verfügbarer Flächen und Ausschluss unzulässiger Flächen (Naturschutz-/Wasserschutzgebiete).
- Bestimmung flächenseitiger Potenziale für die unterschiedlichen Arten erneuerbarer Energien.
- Ermittlung möglicher EE-Anlagenstandorte auf den identifizierten Flächen.
- Ableitung der jeweiligen jährlichen Ertragsmengen (Strom, Wärme) unter Nutzung
 - o typischer Anlagenparameter (z.B. elektrische Nennleistung),
 - regionaler Wetter-/Klimabedingungen (Sonneneinstrahlung, Windgeschwindigkeiten etc.).
- Nutzung eines Rechenmodells zur Ermittlung der Wärmeeinsparoptionen auf Gebäudeseite.
- Das Rechenmodell schreibt die Gebäudewärmebedarfe bis 2045 fort, wobei u.a. Daten aus Klimamodellen und zu Technologieentwicklungen (Effizienz) einfließen.

Ergebnisse:

1 Entwicklung der Gebäudewärmebedarfe bis 2045.

- Es wurde ein konservatives Szenario gewählt (moderate Klimaentwicklung, unterdurchschnittliche Effizienzsteigerung infolge denkmalgeschützter Gebäude etc.).
- Im Vergleich zur Ausgangssituation in 2020 mit rund 119 GWh/a erfolgt bis 2035 eine Reduktion der Wärmebedarfe um 23 %.
- Bis 2045 ist im Vergleich zum Status quo eine Reduktion von 39 % möglich, was für die gesamte Verwaltungsgemeinschaft in einem Wärmebedarf von rund 73 GWh/a resultiert.
- Den überwiegenden Anteil am Gesamtwärmebedarf verursachen auch 2045 die privaten Haushalte (73 %), gefolgt vom Gewerbe (12 %).

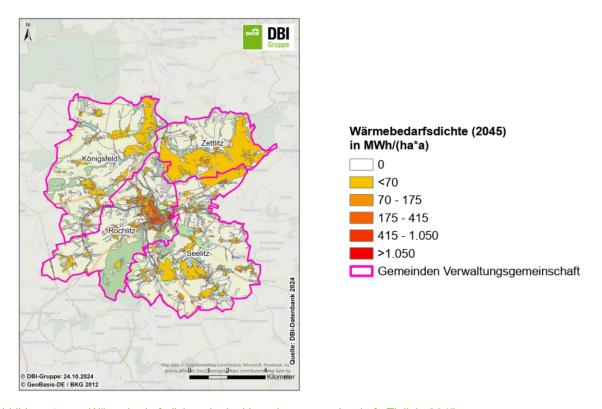
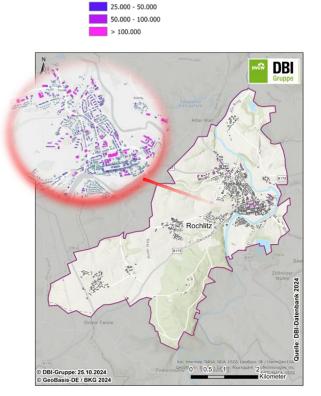


Abbildung 1: Wärmebedarfsdichten in der Verwaltungsgemeinschaft, Zieljahr 2045.


2 Potenziale erneuerbarer Energien zur Wärmeerzeugung und Stromerzeugung für Wärme

Es erfolgte eine Betrachtung der für die Verwaltungsgemeinschaft relevanten Potenziale auf Basis etablierter Technologien.

2.1 Solar (Dachflächen)

Am Beispiel Rochlitz

- In Summe gibt es potenziell folgende Maximalerträge:
 - Solarthermie: 150 GWh/a wärmeseitig
 - Photovoltaik: 41 GWh/a stromseitig (siehe rechte Abbildung)

Gemeindegebiet

PV-Erträge

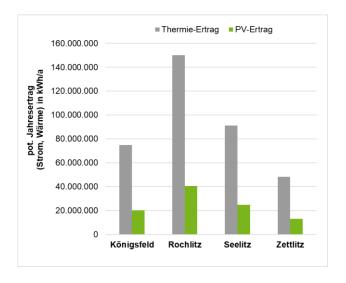

PV-Erträge in kWh/a < 10.000 10.000 - 25.000

Abbildung 2: Dachflächen für Solarthermie bzw. PV in Rochlitz.

Gesamte Verwaltungsgemeinschaft

- In Summe gibt es potenziell folgende Maximalerträge:
 - Solarthermie: 364 GWh/a wärmeseitig
 - o Photovoltaik: 99 GWh/a

stromseitig

Einschätzung und Restriktionen

- Der Anteil der tatsächlich in Zukunft genutzten Dachflächen ist ungewiss und muss geschätzt werden. Dies geschieht im Zielszenario.
- Die maximal hebbaren Solarthermiepotenziale auf Dachflächen entsprechen dem heutigen Wärmebedarf mal den Faktor drei.
- Insbesondere bei Solarthermie sind Fragen der Zwischenspeicherung von Wärme entscheidend, da Wärmeerzeugung und Wärmebedarf zeitliche Unterschiede aufweisen.
- Der Netzanschluss bzw. die Integration der PV-Anlagen in das Stromverteilnetz muss in Rücksprache mit dem zuständigen Netzbetreiber evaluiert werden.

2.2 Abwärme

Gesamte Verwaltungsgemeinschaft

- Betrachtet wurden Abwärmepotenziale aus Biogas- bzw. Biomethananlagen.
- In Rochlitz gibt es ein Biomethan-BHKW, das bereits Wärme in das vorhandene EVR-Wärmenetz einspeist (kein zusätzliches Potenzial).
- Zusätzlich existieren in Zettlitz Biogasanlagen mit einem Abwärmepotenzial von rund 34 GWh/a.

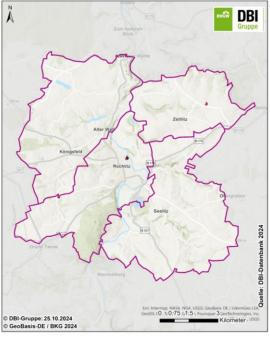
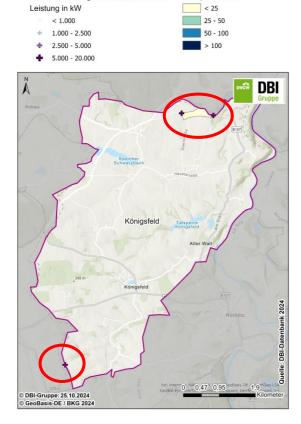



Abbildung 3: Standorte mit Abwärmepotenzial in der Verwaltungsgemeinschaft.

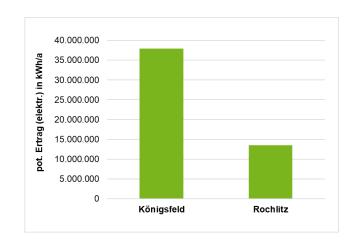
2.3 Windkraft

Am Beispiel Königsfeld

- Gesetzliche Anforderungen (z.B. Siedlungsabstände) wurden eingehalten.
- Bis zu drei Windkraftanlagen (WKA) sind installierbar.
- In Summe gibt es potenziell folgende Erträge:
 - o 37,9 GWh/a stromseitig

Potenzialgebiete Ertrag

Ertrag in GWh/a


Gemeindegebiet

Windkraftanlagen außerhalb Wald

Abbildung 4: Potenzielle Gebiete und Standorte für WKA in Königsfeld.

Gesamte Verwaltungsgemeinschaft

- In Summe gibt es potenziell folgende Erträge:
 - Königsfeld: 37,9 GWh/a stromseitig
 - Rochlitz: 13,5 GWh/a stromseitig

Einschätzung und Restriktionen

- Die Wahl der exemplarischen Beispielanlage (Nabenhöhe, elektrische Nennleistung) bestimmt neben den Windgeschwindigkeiten den möglichen Ertrag.
- Für die Potenzialabschätzung wurde ein durchschnittliches Windjahr auf Grundlage von Daten des Deutschen Wetterdienstes (DWD)¹ zugrunde gelegt.
- Akzeptanzfragen in der Bevölkerung sind zu berücksichtigen.
- Vorteilhaft ist der Umstand, dass mit wenigen Anlagen nahe der Gemeindegrenzen bereits rund die Hälfte des potenziellen Stromertrags aller PV-Dachflächen in der gesamten Verwaltungsgemeinschaft realisiert werden kann.
- Der Netzanschluss bzw. die Integration der Windkraftanlagen in das Stromverteilnetz muss in Rücksprache mit dem zuständigen Netzbetreiber evaluiert werden.

2.4 Geothermie

Gesamte Verwaltungsgemeinschaft

Die Analyse erfolgte durch die TU Bergakademie Freiberg.

Tabelle 1: Gesteinsarten und typische Wärmeentzugsleistungen im Untergrund der Verwaltungsgemeinschaft.

Gestein	Entzugsleist. W je m	Rochlitz	Königsfeld	Seelitz	Zettlitz
Vulkanit	55-57	höheres Potenzial	höheres Potenzial		
Lößlehm (Schwemmlöß)	45-52	mittleres Potenzial	mittleres Potenzial		mittleres Potenzial
Schluff (Ton)	45-47	mittleres Potenzial			
Festgestein (Gneis)	52-57			höheres Potenzial	
Festgestein (Granulit)	47-55			höheres Potenzial	
Tonschiefer	52-57				höheres Potenzial

 Die Verwaltungsgemeinschaft weist verschiedene Gesteinsschichten im Untergrund auf, die sich hinsichtlich ihrer Wärmeentzugsleistung im Falle einer geothermischen Nutzung unterscheiden.

¹ https://opendata.dwd.de/

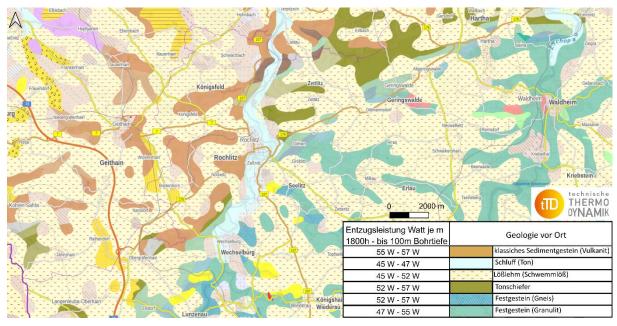
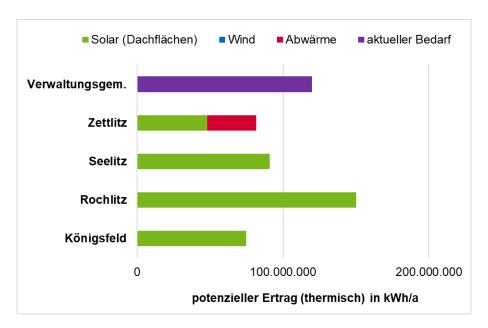
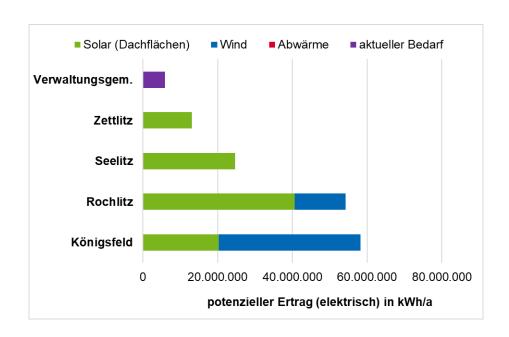


Abbildung 5: Geologische Ausgangsbedingungen in der Verwaltungsgemeinschaft mit möglichen Entzugsleistungen der Gesteinsschichten.


Einschätzung und Restriktionen

- Pauschale Aussagen sind bei Geothermie nicht möglich (hochindividuell).
- Die indikative Analyse zeigt für die Verwaltungsgemeinschaft Potenziale, die den sächsischen Durchschnittsverhältnissen entsprechen.
- Zudem ist die ehemalige Bergbautätigkeit in Seelitz am Erlbach (Kupfererze, Steinkohle) zu nennen; möglicherweise kann Grubenwasser als Wärmequelle in Betracht kommen.
- Bei oberflächennaher Geothermie (Tiefe ≤400 m) liegt im Falle der Nutzung von Erdwärmekollektoren der Flächenbedarf zwischen dem 1,5-fachen und dem 2,5-fachen im Verhältnis zur zu beheizenden Fläche².
- Insbesondere bei tiefer Geothermie (Tiefe >400 m) sind langwierige Vorerkundungen (Probebohrungen) üblich. Für die Umsetzung können hohe Investitionskosten fallen.
- Sofern Geothermie in Betracht gezogen wird, sind zwingend weitere Analysen erforderlich.

² Siehe z.B. <u>www.geothermie.de</u>


2.5 Zusammenfassung der wesentlichen Potenziale

Potenziale der direkten Wärmeerzeugung

• In Relation zum heutigen Nutzwärmebedarf für Raumwärme, Trinkwarmwasser und Prozesswärme sind der Verwaltungsgemeinschaft günstige Bedingungen aus Potenzialsicht zu konstatieren (Variante: direkte Wärmeerzeugung).

Potenziale der Stromerzeugung für Wärme

- Auch In Relation zum heutigen Strombedarf für Wärmezwecke zeigen sich aus Potenzialsicht gute Ausgangsbedingungen in der Verwaltungsgemeinschaft (Variante: Stromnutzung für Wärme).
- Aufgrund der ländlichen Prägung ist z.B. in Königsfeld und Seelitz mit zunehmenden Strombedarfen für elektrische Einzelversorgungslösungen zu rechnen.
- Welcher Technologiemix technisch und wirtschaftlich attraktiv ist und welcher Anteil der theoretischen Potenziale tatsächlich ausgenutzt werden kann, ist im Zielszenario zu ermitteln.
- Zudem ist die Information der Netzbetreiber über die Ergebnisse erforderlich, um netzseitige Beschränkungen zu diskutieren.